Laboratoire TIMA

Actualités



Conférences

22nd International Mixed-Signal Testing Workshop

IMSTW
Venue: Hotel Makedonia Palace, Thessaloniki, GREECE
Date: July 3-5, 2017

Summary: As it happens with design automation, Analog and Mixed-Signal test solutions are much less generic than their siblings from the digital world. In spite of the high costs associated to specification-based test, the industry seemed reluctant to invest in alternatives. Why would we change something that worked? But with the rise of safety-critical applications, reliability requirements are increasing and quality is nowadays a strong asset in competitive markets. Specification-based test cannot be considered perfect any longer. The golden reference is shattered and this is an opportunity for the Analog and Mixed-Signal test community.

> en savoir plus

Thèses soutenances

« Actuellement il n’y aucune soutenance prévue »

Distinctions


Runner-up Best Paper Award in SBCCI 2016 conference (Belo Horizonte, BRAZIL)

Project: Runner-up Best Paper Award in lnternational Symposium on Integrated Circuits and Systems Design (SBCCI) 2016

Project: New Asynchronous Protocols for Enhancing Area and Throughput in Bundled-Data Pipelines

Authors: Jean Simatic (TIMA, CDSI), Abdelkarim Cherkaoui (TIMA, CDSI), Rodrigo Possamai Bastos (TIMA, CDSI), and Laurent Fesquet (TIMA, CDSI)

Abstract: This paper presents two new area-reduced controllers for bundled-data asynchronous pipelines in which the stages have long critical paths. The proposed protocols allow to reduce the number of required delay elements by using the falling edge of the asynchronous request to indicate data validity. For critical path lengths of 25 gates, the first presented scheme decreases the controller area by 48% and slightly increases the maximum throughput (2%) in comparison to a standard micropipeline implementation. The other more-concurrent scheme proposition leads to a 25% area reduction and a 40% improvement of the maximum pipeline throughput.

August 29 - September 3, 2016

 

Best Presentation and Paper Award at JNRSE 2017 conference (Lyon, FRANCE)

Project: Best Presentation and Paper Award at JNRSE 2017 (7èmes Journées Nationales sur la Récupération et le Stockage d'Energie)

Title: "Modeling and operating temperature tuning of a thermally activated piezoelectric generator"

Authors: Adrian Rendon-Hernandez and Skandar Basrour

Abstract: This paper deals with the finite element model of a thermally activated piezoelectric generator. Furthermore, it presents an experimentally validated temperature tuning technique based on the gap distance of the triggering system. The working principle of proposed generator relies on the multi step thermal-to-mechanical-to-electrical energy conversion, overcoming inconveniences related to fast temporal temperatura variations and large temperature differences for efficient operating of classical direct thermal energy conversion. Performance optimization can be done in the form of temperature span tuning by changing the gap distance. By increasing this parameter, it is possible to maximize the Energy up to 10 times. Experimental data suggests that output energy up to 67 μW is possible when optimal gap distance is set. This corresponds to a power density of 103 μWcm-3

May 9-10, 2017

 

Best Paper Award Nominee at SMACD 2017 conference (Taormina, ITALY)

Project: Best Paper Award Nominee in lnternational Conference on Synthesis, Modeling, Analysis, and Simulation Methods and Applications to Circuit Design (SMACD) 2017

Project: Importance of IR Drops on the Modeling of Laser-Induced Transient Faults

Authors: R.A. Camponogara Viera (TIMA, CDSI), P. Maurine (LIRMM, SYSMIC), J.M. Dutertre (ENSMSE, CMP), R. Possamai Bastos (TIMA, CDSI)

Abstract: Laser fault injection attacks induce transient faults by locally generating transient currents capable of temporarily flip the outputs of several gates. Many models used to simulate transient faults induced by laser consider several elements to better represent the effects of the laser on ICs. However, a laser-induced current between VDD and GND, which provokes significant IR drops, has been neglected. This paper highlights the importance of the induced IR drops on the modeling of laserinduced transient faults by using IR drop CAD tools. It also shows that laser-induced IR drops can be sufficiently strong to produce alone transient faults. As a result, the number of faults on a case-study circuit is accentuated whether IR drop effects are taken into account.

June 12-15, 2017

 

Jobs

« Actuellement il n’y aucune proposition de jobs. »